Systematic Identification of Conserved Metabolites in GC/MS Data for Metabolomics and Biomarker Discovery

Analysis of metabolomic profiling data from gas chromatography−mass spectrometry (GC/MS) measurements usually relies upon reference libraries of metabolite mass spectra to structurally identify and track metabolites. In general, techniques to enumerate and track unidentified metabolites are nonsyste...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2007-02, Vol.79 (3), p.966-973
Hauptverfasser: Styczynski, Mark P, Moxley, Joel F, Tong, Lily V, Walther, Jason L, Jensen, Kyle L, Stephanopoulos, Gregory N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Analysis of metabolomic profiling data from gas chromatography−mass spectrometry (GC/MS) measurements usually relies upon reference libraries of metabolite mass spectra to structurally identify and track metabolites. In general, techniques to enumerate and track unidentified metabolites are nonsystematic and require manual curation. We present a method and software implementation, freely available at http://spectconnect.mit.edu, that can systematically detect components that are conserved across samples without the need for a reference library or manual curation. We validate this approach by correctly identifying the components in a known mixture and the discriminating components in a spiked mixture. Finally, we demonstrate an application of this approach with a brief analysis of the Escherichia coli metabolome. By systematically cataloguing conserved metabolite peaks prior to data analysis methods, our approach broadens the scope of metabolomics and facilitates biomarker discovery.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0614846