Single Gene Differentiation by DNA-Modified Carbon Electrodes Using an AC Impedimetric Approach
A simple and novel electrochemical biosensor is described for differentiating between differing gene sequences on the basis of DNA hybridization events. Polyethylenimine-modified screen-printed carbon electrodes were used to immobilize single-stranded PCR fragments from plasmid DNA from the gene for...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2007-02, Vol.79 (3), p.1153-1157 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A simple and novel electrochemical biosensor is described for differentiating between differing gene sequences on the basis of DNA hybridization events. Polyethylenimine-modified screen-printed carbon electrodes were used to immobilize single-stranded PCR fragments from plasmid DNA from the gene for pyruvate kinase. AC impedimetric measurements were first performed on these systems in buffer and then upon exposure to single-stranded DNA. When the electrode and solution DNA were complementary, a large drop in impedance was measured. Complementary DNA could be clearly detected at concentrations down to 1 fg/mL. Higher concentrations gave faster hybridization with saturation occurring at levels above 1 ng/mL. Responses were much lower upon exposure to noncomplementary DNA, even at higher concentrations, with the sensor showing a high degree of selectivity. This sensor format offers great promise for many DNA hybridization applications and lends itself to mass fabrication. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac061070c |