Reducible poly(amido ethylenimine) directed to enhance RNA interference
Abstract Designing synthetic macromolecular vehicles with high transfection efficiency and low cytotoxicity has been a major interest in the development of non-viral gene carriers. A reducible poly(amido ethylenimine) (SS-PAEI) synthesized by addition copolymerization of triethylenetetramine and cys...
Gespeichert in:
Veröffentlicht in: | Biomaterials 2007-04, Vol.28 (10), p.1912-1917 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract Designing synthetic macromolecular vehicles with high transfection efficiency and low cytotoxicity has been a major interest in the development of non-viral gene carriers. A reducible poly(amido ethylenimine) (SS-PAEI) synthesized by addition copolymerization of triethylenetetramine and cystamine bis-acrylamide (poly(TETA/CBA)) was used as a carrier for small interference RNA (siRNA). Poly(TETA/CBA) could efficiently condense siRNA to form stable complexes under physiological conditions and perform complete release of siRNA in a reductive environment. When formulated with VEGF-directed siRNA, poly(TETA/CBA) demonstrated significantly higher suppression of VEGF than linear-polyethylenimine (PEI) (L-PEI, 25 kDa) in human prostate cancer cells (PC-3). After 5 h of transfection, substantial dissociation and intracellular distribution of siRNA was observed in the poly(TETA/CBA) formulation, but not in the L-PEI formulation. The triggered release of siRNA by reductive degradation of poly(TETA/CBA) in the cytoplasm may affect the RNAi activity by increasing cytoplasmic availability of siRNA. These results suggest that the rational design of non-viral carriers should involve considerations for intracellular dissociation and trafficking of a nucleic acid drug to maximize its effect, in conjunction with formation of stable complexes under physiological conditions. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2006.12.019 |