Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase

We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-10, Vol.110 (41), p.20460-20468
Hauptverfasser: Knaup, Jan M, Köhler, Christof, Frauenheim, Thomas, Blumenau, Alexander T, Amkreutz, Marc, Schiffels, Peter, Schneider, Bernhard, Hennemann, Otto-Diedrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 20468
container_issue 41
container_start_page 20460
container_title The journal of physical chemistry. B
container_volume 110
creator Knaup, Jan M
Köhler, Christof
Frauenheim, Thomas
Blumenau, Alexander T
Amkreutz, Marc
Schiffels, Peter
Schneider, Bernhard
Hennemann, Otto-Diedrich
description We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, using the nudged elastic band algorithm in conjunction with self-consistent charge−density functional based tight binding. Our results show that the chosen combination of methods is well suited to obtain an overview of the reaction mechanisms and kinetics of the adsorption of organic molecules on inorganic surfaces. The obtained MEP-s show that there is preference for the adsorption of the adhesion promoter, AMEO, over the resin, DGEBA, while the adsorption of the curing agent, DETA, is unfavorable. Our approach also gives an insight into the ranges of the mechanical and electronic influences of the adsorption process on the interface, which neither full ab initio methods nor force field approaches can provide. These results will help to develop a quantum mechanics-molecular mechanics multiscale embedding scheme for more detailed studies of organic/inorganic hybrid interface reactions.
doi_str_mv 10.1021/jp063814w
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_68947774</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68947774</sourcerecordid><originalsourceid>FETCH-LOGICAL-a207t-dc5b2c7080473731aa6329b2c3211801c3d3691cd262058c2a19fdf3cc35b4893</originalsourceid><addsrcrecordid>eNo9kUtOwzAURS0EovwGbAB5ArMUfxInGVYVFMSnlVImTCzXcdSUJA62A3QLbId9sCYcWhhYtt49vtd-D4BTjIYYEXy5ahGjCQ7fd8ABjggK_Ip3t2eGERuAQ2tXCJGIJGwfDHCMaEgoPgCfY123nROu1I2oYOa6vFQW6gbOdLWulYGjfKmsV6Fw0C0VzDpTCKmgLuD3VzCqyJQO4e0Qzr02yq02be_Vy5ubbwr2GbpRjYMPulKyq3xCYXT96zcRFs6WwqpjsFeIyqqT7X4Enq6v5uOb4H46uR2P7gPhf-WCXEYLImOUoDCmMcVCMEpSX6IE4wRhSXPKUixzwgiKEkkETou8oFLSaBEmKT0CFxvf1ujXTlnH69JKVVWiUbqznCVpGMdx6MGzLdgtapXz1pS1MGv-1z0PBBugtE59_OvCvHDm3xbx-SzjGXrOHu7CR94nn294IS1f6c74lluOEe-nyP-nSH8AvrSLZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68947774</pqid></control><display><type>article</type><title>Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase</title><source>ACS Publications</source><creator>Knaup, Jan M ; Köhler, Christof ; Frauenheim, Thomas ; Blumenau, Alexander T ; Amkreutz, Marc ; Schiffels, Peter ; Schneider, Bernhard ; Hennemann, Otto-Diedrich</creator><creatorcontrib>Knaup, Jan M ; Köhler, Christof ; Frauenheim, Thomas ; Blumenau, Alexander T ; Amkreutz, Marc ; Schiffels, Peter ; Schneider, Bernhard ; Hennemann, Otto-Diedrich</creatorcontrib><description>We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, using the nudged elastic band algorithm in conjunction with self-consistent charge−density functional based tight binding. Our results show that the chosen combination of methods is well suited to obtain an overview of the reaction mechanisms and kinetics of the adsorption of organic molecules on inorganic surfaces. The obtained MEP-s show that there is preference for the adsorption of the adhesion promoter, AMEO, over the resin, DGEBA, while the adsorption of the curing agent, DETA, is unfavorable. Our approach also gives an insight into the ranges of the mechanical and electronic influences of the adsorption process on the interface, which neither full ab initio methods nor force field approaches can provide. These results will help to develop a quantum mechanics-molecular mechanics multiscale embedding scheme for more detailed studies of organic/inorganic hybrid interface reactions.</description><identifier>ISSN: 1520-6106</identifier><identifier>EISSN: 1520-5207</identifier><identifier>DOI: 10.1021/jp063814w</identifier><identifier>PMID: 17034231</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>The journal of physical chemistry. B, 2006-10, Vol.110 (41), p.20460-20468</ispartof><rights>Copyright © 2006 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jp063814w$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jp063814w$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17034231$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knaup, Jan M</creatorcontrib><creatorcontrib>Köhler, Christof</creatorcontrib><creatorcontrib>Frauenheim, Thomas</creatorcontrib><creatorcontrib>Blumenau, Alexander T</creatorcontrib><creatorcontrib>Amkreutz, Marc</creatorcontrib><creatorcontrib>Schiffels, Peter</creatorcontrib><creatorcontrib>Schneider, Bernhard</creatorcontrib><creatorcontrib>Hennemann, Otto-Diedrich</creatorcontrib><title>Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase</title><title>The journal of physical chemistry. B</title><addtitle>J. Phys. Chem. B</addtitle><description>We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, using the nudged elastic band algorithm in conjunction with self-consistent charge−density functional based tight binding. Our results show that the chosen combination of methods is well suited to obtain an overview of the reaction mechanisms and kinetics of the adsorption of organic molecules on inorganic surfaces. The obtained MEP-s show that there is preference for the adsorption of the adhesion promoter, AMEO, over the resin, DGEBA, while the adsorption of the curing agent, DETA, is unfavorable. Our approach also gives an insight into the ranges of the mechanical and electronic influences of the adsorption process on the interface, which neither full ab initio methods nor force field approaches can provide. These results will help to develop a quantum mechanics-molecular mechanics multiscale embedding scheme for more detailed studies of organic/inorganic hybrid interface reactions.</description><issn>1520-6106</issn><issn>1520-5207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNo9kUtOwzAURS0EovwGbAB5ArMUfxInGVYVFMSnlVImTCzXcdSUJA62A3QLbId9sCYcWhhYtt49vtd-D4BTjIYYEXy5ahGjCQ7fd8ABjggK_Ip3t2eGERuAQ2tXCJGIJGwfDHCMaEgoPgCfY123nROu1I2oYOa6vFQW6gbOdLWulYGjfKmsV6Fw0C0VzDpTCKmgLuD3VzCqyJQO4e0Qzr02yq02be_Vy5ubbwr2GbpRjYMPulKyq3xCYXT96zcRFs6WwqpjsFeIyqqT7X4Enq6v5uOb4H46uR2P7gPhf-WCXEYLImOUoDCmMcVCMEpSX6IE4wRhSXPKUixzwgiKEkkETou8oFLSaBEmKT0CFxvf1ujXTlnH69JKVVWiUbqznCVpGMdx6MGzLdgtapXz1pS1MGv-1z0PBBugtE59_OvCvHDm3xbx-SzjGXrOHu7CR94nn294IS1f6c74lluOEe-nyP-nSH8AvrSLZA</recordid><startdate>20061019</startdate><enddate>20061019</enddate><creator>Knaup, Jan M</creator><creator>Köhler, Christof</creator><creator>Frauenheim, Thomas</creator><creator>Blumenau, Alexander T</creator><creator>Amkreutz, Marc</creator><creator>Schiffels, Peter</creator><creator>Schneider, Bernhard</creator><creator>Hennemann, Otto-Diedrich</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20061019</creationdate><title>Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase</title><author>Knaup, Jan M ; Köhler, Christof ; Frauenheim, Thomas ; Blumenau, Alexander T ; Amkreutz, Marc ; Schiffels, Peter ; Schneider, Bernhard ; Hennemann, Otto-Diedrich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a207t-dc5b2c7080473731aa6329b2c3211801c3d3691cd262058c2a19fdf3cc35b4893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knaup, Jan M</creatorcontrib><creatorcontrib>Köhler, Christof</creatorcontrib><creatorcontrib>Frauenheim, Thomas</creatorcontrib><creatorcontrib>Blumenau, Alexander T</creatorcontrib><creatorcontrib>Amkreutz, Marc</creatorcontrib><creatorcontrib>Schiffels, Peter</creatorcontrib><creatorcontrib>Schneider, Bernhard</creatorcontrib><creatorcontrib>Hennemann, Otto-Diedrich</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>The journal of physical chemistry. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Knaup, Jan M</au><au>Köhler, Christof</au><au>Frauenheim, Thomas</au><au>Blumenau, Alexander T</au><au>Amkreutz, Marc</au><au>Schiffels, Peter</au><au>Schneider, Bernhard</au><au>Hennemann, Otto-Diedrich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase</atitle><jtitle>The journal of physical chemistry. B</jtitle><addtitle>J. Phys. Chem. B</addtitle><date>2006-10-19</date><risdate>2006</risdate><volume>110</volume><issue>41</issue><spage>20460</spage><epage>20468</epage><pages>20460-20468</pages><issn>1520-6106</issn><eissn>1520-5207</eissn><abstract>We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, using the nudged elastic band algorithm in conjunction with self-consistent charge−density functional based tight binding. Our results show that the chosen combination of methods is well suited to obtain an overview of the reaction mechanisms and kinetics of the adsorption of organic molecules on inorganic surfaces. The obtained MEP-s show that there is preference for the adsorption of the adhesion promoter, AMEO, over the resin, DGEBA, while the adsorption of the curing agent, DETA, is unfavorable. Our approach also gives an insight into the ranges of the mechanical and electronic influences of the adsorption process on the interface, which neither full ab initio methods nor force field approaches can provide. These results will help to develop a quantum mechanics-molecular mechanics multiscale embedding scheme for more detailed studies of organic/inorganic hybrid interface reactions.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>17034231</pmid><doi>10.1021/jp063814w</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1520-6106
ispartof The journal of physical chemistry. B, 2006-10, Vol.110 (41), p.20460-20468
issn 1520-6106
1520-5207
language eng
recordid cdi_proquest_miscellaneous_68947774
source ACS Publications
title Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A26%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Studies%20on%20Polymer%20Adhesion%20at%20the%20Surface%20of%20%CE%B3-Al2O3.%20I.%20The%20Adsorption%20of%20Adhesive%20Component%20Molecules%20from%20the%20Gas%20Phase&rft.jtitle=The%20journal%20of%20physical%20chemistry.%20B&rft.au=Knaup,%20Jan%20M&rft.date=2006-10-19&rft.volume=110&rft.issue=41&rft.spage=20460&rft.epage=20468&rft.pages=20460-20468&rft.issn=1520-6106&rft.eissn=1520-5207&rft_id=info:doi/10.1021/jp063814w&rft_dat=%3Cproquest_pubme%3E68947774%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68947774&rft_id=info:pmid/17034231&rfr_iscdi=true