Computational Studies on Polymer Adhesion at the Surface of γ-Al2O3. I. The Adsorption of Adhesive Component Molecules from the Gas Phase

We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-10, Vol.110 (41), p.20460-20468
Hauptverfasser: Knaup, Jan M, Köhler, Christof, Frauenheim, Thomas, Blumenau, Alexander T, Amkreutz, Marc, Schiffels, Peter, Schneider, Bernhard, Hennemann, Otto-Diedrich
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We calculate the minimum energy paths and reaction energies of the adsorption of the epoxide adhesive components diglycidylesterbisphenol A (DGEBA), diethyltriamine (DETA), and the adhesion promoter 3-aminopropylmethoxysilane (AMEO) at two different sites on a model of the native Al2O3 surface, using the nudged elastic band algorithm in conjunction with self-consistent charge−density functional based tight binding. Our results show that the chosen combination of methods is well suited to obtain an overview of the reaction mechanisms and kinetics of the adsorption of organic molecules on inorganic surfaces. The obtained MEP-s show that there is preference for the adsorption of the adhesion promoter, AMEO, over the resin, DGEBA, while the adsorption of the curing agent, DETA, is unfavorable. Our approach also gives an insight into the ranges of the mechanical and electronic influences of the adsorption process on the interface, which neither full ab initio methods nor force field approaches can provide. These results will help to develop a quantum mechanics-molecular mechanics multiscale embedding scheme for more detailed studies of organic/inorganic hybrid interface reactions.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp063814w