Percolation in the harmonic crystal and voter model in three dimensions

We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 1), p.031120-031120, Article 031120
Hauptverfasser: Marinov, Vesselin I, Lebowitz, Joel L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031120
container_issue 3 Pt 1
container_start_page 031120
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 74
creator Marinov, Vesselin I
Lebowitz, Joel L
description We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)>h (
doi_str_mv 10.1103/PhysRevE.74.031120
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_68940440</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68940440</sourcerecordid><originalsourceid>FETCH-LOGICAL-c345t-8e2acba070f7807816f2bafbe9a5e1b553dbafb322150d2264abd8ff75f3b0483</originalsourceid><addsrcrecordid>eNpFkE1LAzEURYMotlb_gAvJyt3Ul6_JdCmlVqFgEV2HZOaFjsxMajIt9N_bMhVX7z449y4OIfcMpoyBeFpvDukD94upllMQjHG4IGOmFGRc6PzylMUsE1qpEblJ6RtAcFHIazJiGrjKQY_Jco2xDI3t69DRuqP9BunGxjZ0dUnLeEi9bajtKroPPUbahgqbgYuItKpb7NKxmm7JlbdNwrvznZCvl8Xn_DVbvS_f5s-rrBRS9VmB3JbOggavC9AFyz131jucWYXMKSWq0ys4ZwoqznNpXVV4r5UXDmQhJuRx2N3G8LPD1Ju2TiU2je0w7JLJi5kEKeEI8gEsY0gpojfbWLc2HgwDc9Jn_vQZLc2g71h6OK_vXIvVf-XsS_wCGkxt1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>68940440</pqid></control><display><type>article</type><title>Percolation in the harmonic crystal and voter model in three dimensions</title><source>American Physical Society Journals</source><creator>Marinov, Vesselin I ; Lebowitz, Joel L</creator><creatorcontrib>Marinov, Vesselin I ; Lebowitz, Joel L</creatorcontrib><description>We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J&gt;0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)&gt;h (&lt;h). The probability p of a site being occupied is then a function of h . In the voter model we consider a stationary measure in which each site is either occupied or empty, with probability p . In both cases the truncated pair correlation of the occupation variables, G(x-y) , decays asymptotically as mid |x-y|-1 . Using some Monte Carlo simulation methods and finite-size scaling we find accurate values of pc as well as the critical exponents for these systems. The latter are different from that of independent percolation in d=3 , as expected from the work of Weinrib and Halperin (WH) for the percolation transition of systems with G(r) approximately r-a [Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent nu is very close to the predicted value of 2, supporting the conjecture by WH that nu=2/a is exact.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.74.031120</identifier><identifier>PMID: 17025607</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 1), p.031120-031120, Article 031120</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c345t-8e2acba070f7807816f2bafbe9a5e1b553dbafb322150d2264abd8ff75f3b0483</citedby><cites>FETCH-LOGICAL-c345t-8e2acba070f7807816f2bafbe9a5e1b553dbafb322150d2264abd8ff75f3b0483</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2863,2864,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17025607$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marinov, Vesselin I</creatorcontrib><creatorcontrib>Lebowitz, Joel L</creatorcontrib><title>Percolation in the harmonic crystal and voter model in three dimensions</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J&gt;0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)&gt;h (&lt;h). The probability p of a site being occupied is then a function of h . In the voter model we consider a stationary measure in which each site is either occupied or empty, with probability p . In both cases the truncated pair correlation of the occupation variables, G(x-y) , decays asymptotically as mid |x-y|-1 . Using some Monte Carlo simulation methods and finite-size scaling we find accurate values of pc as well as the critical exponents for these systems. The latter are different from that of independent percolation in d=3 , as expected from the work of Weinrib and Halperin (WH) for the percolation transition of systems with G(r) approximately r-a [Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent nu is very close to the predicted value of 2, supporting the conjecture by WH that nu=2/a is exact.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpFkE1LAzEURYMotlb_gAvJyt3Ul6_JdCmlVqFgEV2HZOaFjsxMajIt9N_bMhVX7z449y4OIfcMpoyBeFpvDukD94upllMQjHG4IGOmFGRc6PzylMUsE1qpEblJ6RtAcFHIazJiGrjKQY_Jco2xDI3t69DRuqP9BunGxjZ0dUnLeEi9bajtKroPPUbahgqbgYuItKpb7NKxmm7JlbdNwrvznZCvl8Xn_DVbvS_f5s-rrBRS9VmB3JbOggavC9AFyz131jucWYXMKSWq0ys4ZwoqznNpXVV4r5UXDmQhJuRx2N3G8LPD1Ju2TiU2je0w7JLJi5kEKeEI8gEsY0gpojfbWLc2HgwDc9Jn_vQZLc2g71h6OK_vXIvVf-XsS_wCGkxt1Q</recordid><startdate>20060901</startdate><enddate>20060901</enddate><creator>Marinov, Vesselin I</creator><creator>Lebowitz, Joel L</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20060901</creationdate><title>Percolation in the harmonic crystal and voter model in three dimensions</title><author>Marinov, Vesselin I ; Lebowitz, Joel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c345t-8e2acba070f7807816f2bafbe9a5e1b553dbafb322150d2264abd8ff75f3b0483</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Marinov, Vesselin I</creatorcontrib><creatorcontrib>Lebowitz, Joel L</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marinov, Vesselin I</au><au>Lebowitz, Joel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation in the harmonic crystal and voter model in three dimensions</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2006-09-01</date><risdate>2006</risdate><volume>74</volume><issue>3 Pt 1</issue><spage>031120</spage><epage>031120</epage><pages>031120-031120</pages><artnum>031120</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J&gt;0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)&gt;h (&lt;h). The probability p of a site being occupied is then a function of h . In the voter model we consider a stationary measure in which each site is either occupied or empty, with probability p . In both cases the truncated pair correlation of the occupation variables, G(x-y) , decays asymptotically as mid |x-y|-1 . Using some Monte Carlo simulation methods and finite-size scaling we find accurate values of pc as well as the critical exponents for these systems. The latter are different from that of independent percolation in d=3 , as expected from the work of Weinrib and Halperin (WH) for the percolation transition of systems with G(r) approximately r-a [Phys. Rev. B 27, 413 (1983)]. In particular the correlation length exponent nu is very close to the predicted value of 2, supporting the conjecture by WH that nu=2/a is exact.</abstract><cop>United States</cop><pmid>17025607</pmid><doi>10.1103/PhysRevE.74.031120</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 1), p.031120-031120, Article 031120
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_68940440
source American Physical Society Journals
title Percolation in the harmonic crystal and voter model in three dimensions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A07%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20in%20the%20harmonic%20crystal%20and%20voter%20model%20in%20three%20dimensions&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Marinov,%20Vesselin%20I&rft.date=2006-09-01&rft.volume=74&rft.issue=3%20Pt%201&rft.spage=031120&rft.epage=031120&rft.pages=031120-031120&rft.artnum=031120&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.74.031120&rft_dat=%3Cproquest_cross%3E68940440%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=68940440&rft_id=info:pmid/17025607&rfr_iscdi=true