Percolation in the harmonic crystal and voter model in three dimensions

We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a sc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 1), p.031120-031120, Article 031120
Hauptverfasser: Marinov, Vesselin I, Lebowitz, Joel L
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)>h (
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.74.031120