Percolation in the harmonic crystal and voter model in three dimensions
We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a sc...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2006-09, Vol.74 (3 Pt 1), p.031120-031120, Article 031120 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the site percolation transition in two strongly correlated systems in three dimensions: the massless harmonic crystal and the voter model. In the first case we start with a Gibbs measure for the potential U=(J2) summation operatorx,y[phi(x)-phi(y)]2, x,y Z3, J>0, and phi(x) R, a scalar height variable, and define occupation variables rhoh(x)=1 (0) for phi(x)>h ( |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.74.031120 |