Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms
Iron-sulfur (Fe/S) clusters require a complex set of proteins to become assembled and incorporated into apoproteins in a living cell. Researchers have described three distinct assembly systems in eukaryotes that are involved in the maturation of cellular Fe/S proteins. Mitochondria are central for b...
Gespeichert in:
Veröffentlicht in: | Annual review of cell and developmental biology 2006-01, Vol.22 (1), p.457-486 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Iron-sulfur (Fe/S) clusters require a complex set of proteins to become assembled and incorporated into apoproteins in a living cell. Researchers have described three distinct assembly systems in eukaryotes that are involved in the maturation of cellular Fe/S proteins. Mitochondria are central for biogenesis. They contain the ISC-the iron-sulfur cluster assembly machinery that was inherited from a similar system of eubacteria in evolution and is involved in biogenesis of all cellular Fe/S proteins. The basic principle of mitochondrial (and bacterial) Fe/S protein maturation is the synthesis of the Fe/S cluster on a scaffold protein before the cluster is transferred to apoproteins. Biogenesis of cytosolic and nuclear Fe/S proteins is facilitated by the cytosolic iron-sulfur protein assembly (CIA) apparatus. This process requires the participation of mitochondria that export a still unknown component via the ISC export machinery, including an ABC transporter. |
---|---|
ISSN: | 1081-0706 1530-8995 |
DOI: | 10.1146/annurev.cellbio.22.010305.104538 |