TcrPDEA1, a cAMP-specific phosphodiesterase with atypical pharmacological properties from Trypanosoma cruzi

Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of cAMP and cGMP, and regulate a variety of cellular processes by controlling the levels of these second messengers. We have previously described the presence of both a calcium-stimulated adenylyl cyclase and two membrane-bound cAM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and biochemical parasitology 2007-03, Vol.152 (1), p.72-79
Hauptverfasser: Alonso, Guillermo D., Schoijet, Alejandra C., Torres, Héctor N., Flawiá, Mirtha M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cyclic nucleotide phosphodiesterases (PDEs) catalyze the degradation of cAMP and cGMP, and regulate a variety of cellular processes by controlling the levels of these second messengers. We have previously described the presence of both a calcium-stimulated adenylyl cyclase and two membrane-bound cAMP-specific PDEs (one of them strongly associated to the flagellum and the other one with a possible vesicular localization) in Trypanosoma cruzi. Here we report the identification and characterization of TcrPDEA1, a singular phosphodiesterase of T. cruzi which is resistant to the typical phosphodiesterase inhibitors, such as IBMX, papaverine and theofylline. TcrPDEA1 is a single copy gene that encodes a 620-amino acid protein, which is grouped with PDE1 family members, mainly with its kinetoplastid orthologs. TcrPDEA1 was able to complement a mutant yeast strain deficient in PDE genes, demonstrating that this enzyme is a functional phosphodiesterase. TcrPDEA1 is specific for cAMP with a high Km value (191.1±6.5μM). Cyclic GMP neither activates the enzyme nor competes as a substrate. In addition, calcium-calmodulin did not affect the kinetic parameters and, as its counterpart in T. brucei, magnesium showed to be crucial for its activity and stability. Although TcrPDEA1 function remains unclear, its presence points out the high complexity of the cAMP signaling in trypanosomatids and the possible compartmentalization of the enzymes involved in the cAMP pathway.
ISSN:0166-6851
1872-9428
DOI:10.1016/j.molbiopara.2006.12.002