Effect of nuclear motion on the absorption spectrum of dipicolinic acid

Using semiclassical electron-radiation-ion dynamics, the authors have examined the effect of nuclear motion, resulting from both finite temperature and the response to a radiation field, on the line broadening of the excitation profile of 2,6-pyridinedicarboxylic acid (dipicolinic acid). With nuclei...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2007-01, Vol.126 (2), p.024502-024502-7
Hauptverfasser: Sauer, Petra, Rostovtsev, Yuri, Allen, Roland E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using semiclassical electron-radiation-ion dynamics, the authors have examined the effect of nuclear motion, resulting from both finite temperature and the response to a radiation field, on the line broadening of the excitation profile of 2,6-pyridinedicarboxylic acid (dipicolinic acid). With nuclei fixed, there is a relatively small broadening associated with the finite time duration of an applied laser pulse. When the nuclei are allowed to move, the excitation spectrum exhibits a much larger broadening, and is also reduced in height and shifted toward lower frequencies. In both cases, the excitation is due to well-defined π to π * transitions. The further inclusion of thermal motion at room temperature broadens the linewidth considerably because of variations in the molecular geometry: Transitions that had zero or negligible transition probabilities in the ground state geometry are weakly excited at room temperature.
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2423017