Bone-marrow derived hematopoietic stem/progenitor cells express multiple isoforms of NADPH oxidase and produce constitutively reactive oxygen species
Consolidated evidence highlights the importance of redox signalling in poising the balance between self-renewal and differentiation in adult stem cells. The present study shows that human hematopoietic stem/progenitor cells (HSCs) constitutively generate low levels of hydrogen peroxide whose product...
Gespeichert in:
Veröffentlicht in: | Biochemical and biophysical research communications 2007-02, Vol.353 (4), p.965-972 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Consolidated evidence highlights the importance of redox signalling in poising the balance between self-renewal and differentiation in adult stem cells. The present study shows that human hematopoietic stem/progenitor cells (HSCs) constitutively generate low levels of hydrogen peroxide whose production is inhibited by DPI, apocynin, catalase, and LY294002 and scarcely stimulated by PMA. Moreover, it is shown that HSCs express at the mRNA and protein levels the catalytic subunits of NOX1, NOX2, and NOX4 isoforms of the NADPH oxidase family along with the complete battery of the regulatory subunits p22, p40, p47, p67, rac1, rac2, NOXO1, and NOXA1 as well as the splicing variant NOX2s and that the three NOX isoforms are largely co-expressed in the same HSC. These findings are interpreted in terms of a positive feed-back mechanism of NOXs activation enabling a fine tuning of the ROS level to be possibly used in redox-mediated signalling for growth and differentiation of HSCs. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2006.12.148 |