Analysis of human hippocampus gangliosides by fully-automated chip-based nanoelectrospray tandem mass spectrometry

Modern microfluidic devices are currently introduced in electrospray (ESI) mass spectrometry (MS), tending to substitute the classical capillary-based ESI infusion. Automated systems using the combination of robotized sample handling and chip-based ESI are significantly increasing the analysis repro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Chromatography A 2006-10, Vol.1130 (2), p.238-245
Hauptverfasser: Vukelić, Željka, Zarei, Mostafa, Peter-Katalinić, Jasna, Zamfir, Alina D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Modern microfluidic devices are currently introduced in electrospray (ESI) mass spectrometry (MS), tending to substitute the classical capillary-based ESI infusion. Automated systems using the combination of robotized sample handling and chip-based ESI are significantly increasing the analysis reproducibility, precision, throughput, and efficiency. In the last couple of years our group developed the chip-based ESI–MS approach for glycomics in biomedical research and applied it for oligosaccharide, glycopeptide and ganglioside investigation. Here we report upon the optimization and application of this modern technique for the analysis of differential ganglioside expression patterns in human fetal and adult hippocampus. By this methodology, ganglioside species exhibiting high degree of heterogeneity in the ceramide motifs and biologically-relevant modifications could be identified in human hippocampus. The ultra-high reproducibility of the experiments uniquely provided by the chip-ESI approach allowed for a reliable MS-based ganglioside comparative assay. Moreover, the particular feature of chip ESI-tandem MS to provide structural information at high sensitivity was useful for detailed characterization of hippocampus-associated species. The experimental data presented in this study indicate the benefits of microfluidic/MS for determination of the topospecific brain ganglioside composition and development-related changes in their expression, which might be of high value in clinical investigation and for studies related to ganglioside-based therapy of central nervous system diseases.
ISSN:0021-9673
DOI:10.1016/j.chroma.2006.05.033