Partitioning behavior of trace elements during pilot-scale fluidized bed combustion of high ash content lignite
This study describes the partitioning of 20 trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and eight major and minor elements (Al, Ca, Fe, K, Mg, Na, Si, Ti) during the combustion of high ash content lignite. The experiments were carried out in the 0.3 M...
Gespeichert in:
Veröffentlicht in: | Journal of hazardous materials 2006-10, Vol.137 (3), p.1698-1703 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study describes the partitioning of 20 trace elements (As, B, Ba, Cd, Co, Cr, Cu, Hg, Li, Mn, Mo, Ni, P, Pb, Sb, Se, Sn, Tl, V, Zn) and eight major and minor elements (Al, Ca, Fe, K, Mg, Na, Si, Ti) during the combustion of high ash content lignite. The experiments were carried out in the 0.3
MW
t Middle East Technical University (METU) atmospheric bubbling fluidized bed combustor (ABFBC) test rig with and without limestone addition. Inert bed material utilized in the experiments was bed ash obtained previously from the combustion of the same lignite without limestone addition in the same test rig. Concentrations of trace elements in coal, limestone, bottom ash, cyclone ash and filter ash were determined by inductively coupled plasma optical emission spectroscopy (ICP-OES). Partitioning of major and minor elements are influenced by the ash split between the bottom ash and fly ash and that the major proportion of most of the trace elements (As, Ba, Cr, Hg, Li, Mo, Ni, Sn, V, Zn) are recovered in fly ash. Limestone addition shifts the partitioning of Ba, Cr, Mo, Ni, Sn, V, Zn from bottom ash to fly ash. |
---|---|
ISSN: | 0304-3894 1873-3336 |
DOI: | 10.1016/j.jhazmat.2006.05.011 |