Protein- and energy-mediated targeting of chloroplast outer envelope membrane proteins

While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Plant journal : for cell and molecular biology 2005-12, Vol.44 (6), p.917-927
Hauptverfasser: Hofmann, N.R, Theg, S.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:While the import of nuclear-encoded chloroplast proteins is relatively well studied, the targeting of proteins to the outer membrane of the chloroplast envelope is not. The insertion of most outer membrane proteins (OMP) is generally considered to occur without the utilization of energy or proteinaceous components. Recently, however, proteins have been shown to be involved in the integration of outer envelope protein 14 (OEP14), whose outer membrane insertion was previously thought to be spontaneous. Here we investigate the insertion of two proteins from Physcomitrella patens, PpOEP64-1 and PpOEP64-2 (formerly known as PpToc64-1 and PpToc64-2), into the outer membrane of chloroplasts. The association of PpOEP64-1 with chloroplasts was not affected by chloroplast pre-treatments. Its insertion into the membrane was affected, however, demonstrating the importance of measuring insertion specifically in these types of assays. We found that the insertion of PpOEP64-1, PpOEP64-2 and two other OMPs, OEP14 and digalactosyldiacylglycerol synthase 1 (DGD1), was reduced by either nucleotide depletion or proteolysis of the chloroplasts. Integration was also inhibited in the presence of an excess of an imported precursor protein. In addition, OEP14 competed with the insertion of the OEP64s and DGD1. These data demonstrate that the targeting of several OMPs involves proteins present in chloroplasts and requires nucleotides. Together with previous reports, our data suggest that OMPs in general do not insert spontaneously.
ISSN:0960-7412
1365-313X
DOI:10.1111/j.1365-313X.2005.02571.x