Endothelin-1 promotes epithelial-to-mesenchymal transition in human ovarian cancer cells

Despite considerable efforts to improve early detection and advances in chemotherapy, metastatic relapses remain a major challenge in the management of ovarian cancer. The endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis has been shown to have a significant role in ovarian carcinoma by promot...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancer research (Chicago, Ill.) Ill.), 2005-12, Vol.65 (24), p.11649-11657
Hauptverfasser: ROSANO, Laura, SPINELLA, Francesca, DI CASTRO, Valeriana, NICOTRA, Maria Rita, DEDHAR, Shoukat, GARCIA DE HERREROS, Antonio, GIORGIO NATALI, Pier, BAGNATO, Anna
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Despite considerable efforts to improve early detection and advances in chemotherapy, metastatic relapses remain a major challenge in the management of ovarian cancer. The endothelin A receptor (ET(A)R)/endothelin-1 (ET-1) axis has been shown to have a significant role in ovarian carcinoma by promoting tumorigenesis. Here we show that the ET-1/ET(A)R autocrine pathway drives epithelial-to-mesenchymal transition (EMT) in ovarian tumor cells by inducing a fibroblastoid and invasive phenotype, down-regulation of E-cadherin, increased levels of beta-catenin, Snail, and other mesenchymal markers, and suppression of E-cadherin promoter activity. Activation of ET(A)R by ET-1 triggers an integrin-linked kinase (ILK)-mediated signaling pathway leading to glycogen synthase kinase-3beta (GSK-3beta) inhibition, Snail and beta-catenin stabilization, and regulation of transcriptional programs that control EMT. Transfection of dominant negative ILK or exposure to an ILK inhibitor suppresses the ET-1-induced phosphorylation of GSK-3beta as well as Snail and beta-catenin protein stability, activity, and invasiveness, indicating that ET-1/ET(A)R-induced EMT-promoting effects depend on ILK. ET(A)R blockade by specific antagonists or reduction by ET(A)R RNA interference reverses EMT and cell invasion by inhibiting autocrine signaling pathways. In ovarian carcinoma xenografts, ABT-627, a specific ET(A)R antagonist, suppresses EMT determinants and tumor growth. In human ovarian cancers, ET(A)R expression is associated with E-cadherin down-regulation, N-cadherin expression, and tumor grade. Collectively, these findings provide evidence of a critical role for the ET-1/ET(A)R axis during distinct steps of ovarian carcinoma progression and identify novel targets of therapeutic intervention.
ISSN:0008-5472
1538-7445
DOI:10.1158/0008-5472.CAN-05-2123