Human regulatory T cells control xenogeneic graft-versus-host disease induced by autologous T cells in RAG2-/-gammac-/- immunodeficient mice
Effective prevention of graft-versus-host disease (GvHD) is a major challenge to improve the safety of allogeneic stem cell transplantation for leukemia treatment. In murine transplantation models, administration of naturally occurring CD4+CD25+ regulatory T cells (Treg) can prevent GvHD. Toward und...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2006-09, Vol.12 (18), p.5520-5525 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Effective prevention of graft-versus-host disease (GvHD) is a major challenge to improve the safety of allogeneic stem cell transplantation for leukemia treatment. In murine transplantation models, administration of naturally occurring CD4+CD25+ regulatory T cells (Treg) can prevent GvHD. Toward understanding the role of human Treg in stem cell transplantation, we studied their capacity to modulate T-cell-dependent xenogeneic (x)-GvHD in a new model where x-GvHD is induced in RAG2-/-gammac-/- mice by i.v. administration of human peripheral blood mononuclear cells (PBMC).
Human PBMC, depleted of or supplemented with autologous CD25+ Tregs, were administered in mice at different doses. The development of x-GvHD, in vivo expansion of human T cells, and secretion of human cytokines were monitored at weekly intervals.
Depletion of CD25+ cells from human PBMC significantly exacerbated x-GvHD and accelerated its lethality. In contrast, coadministration of Treg-enriched CD25+ cell fractions with autologous PBMC significantly reduced the lethality of x-GvHD. Treg administration significantly inhibited the explosive expansion of effector CD4+ and CD8+ T cells. Interestingly, protection from x-GvHD after Treg administration was associated with a significant increase in plasma levels of interleukin-10 and IFN-gamma, suggesting the de novo development of TR1 cells.
These results show, for the first time, the potent in vivo capacity of naturally occurring human Tregs to control GvHD-inducing autologous T cells, and indicate that this xenogeneic in vivo model may provide a suitable platform to further explore the in vivo mechanisms of T-cell down-regulation by naturally occurring human Tregs. |
---|---|
ISSN: | 1078-0432 |