Single vibronic level emission spectroscopic studies of the ground state energy levels and molecular structures of jet-cooled HGeBr, DGeBr, HGeI, and DGeI
Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the A (1)A(")-X (1)A(') electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonici...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2006-09, Vol.125 (11), p.114301-114301 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the A (1)A(")-X (1)A(') electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeClDGeCl and the corresponding silylenes (HSiX). Harmonic force fields were obtained for both molecules, although only four of the six force constants could be determined. The ground state effective rotational constants and force field data were combined to calculate average (r(z)) and approximate equilibrium (r(e) (z)) structures. For HGeBr r(e) (z)(GeH)=1.593(9) A, r(e) (z)(GeBr)=2.325(21) A, and the bond angle was fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.6 degrees . For HGeI we obtained r(e) (z)(GeH)=1.589(1) A, r(e) (z)(GeI)=2.525(5) A, and bond angle=93.2 degrees . Franck-Condon simulations of the emission spectra using ab initio Cartesian displacement coordinates reproduce the observed intensity distributions satisfactorily. The trends in structural parameters in the halogermylenes and halosilylenes can be readily understood based on the electronegativity of the halogen substituent. |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/1.2355496 |