Extracellular signal-regulated kinases are not involved in activity-dependent survival or apoptosis in cerebellar granule neurons

Cerebellar granule neurons (CGNs) depend on potassium depolarization for survival and undergo apoptosis when deprived of depolarizing concentration of potassium. Extracellular signal-regulated kinases (ERK1/2) are thought to be activated in response to potassium depolarization and responsible for th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuroscience letters 2006-10, Vol.407 (3), p.214-218
Hauptverfasser: Song, Bin, Ma, Chi, Gong, Shoufang, Yuan, Zhongmin, Li, Dan, Liu, Wei, Li, Wenming, Chen, Ruzhu, Zhu, Xiaonan, Zeng, Jinsheng, Han, Yifan, Li, Mingtao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Cerebellar granule neurons (CGNs) depend on potassium depolarization for survival and undergo apoptosis when deprived of depolarizing concentration of potassium. Extracellular signal-regulated kinases (ERK1/2) are thought to be activated in response to potassium depolarization and responsible for the activity-dependent survival in CGNs, but one recent study has revealed that ERK1/2 is activated by potassium deprivation and is required for apoptosis of CGNs. In this study we showed that ERK1/2 was inactivated, rather than activated, by potassium deprivation, indicating a lack of ERK1/2 involvement in potassium deprivation-induced apoptosis. Furthermore, suppression of potassium depolarization-induced activation of ERK1/2 with chemical inhibitor U0126 or PD98059 had no influence on the pro-survival effect of potassium depolarisation. Thus, ERK1/2 was not required for potassium depolarization-dependent survival of CGNs. Taken together, our findings suggest that ERK1/2 is not involved in activity-dependent survival or apoptosis of CGNs.
ISSN:0304-3940
1872-7972
DOI:10.1016/j.neulet.2006.08.040