MDM2 Promotes Proteasome-Dependent Ubiquitin-Independent Degradation of Retinoblastoma Protein
Inactivation of retinoblastoma protein (Rb) plays a critical role in the development of human malignancies. It has been shown that Rb is degraded through a proteasome-dependent pathway, yet the mechanism is largely unclear. MDM2 is frequently found amplified and overexpressed in a variety of human t...
Gespeichert in:
Veröffentlicht in: | Molecular cell 2005-12, Vol.20 (5), p.699-708 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Inactivation of retinoblastoma protein (Rb) plays a critical role in the development of human malignancies. It has been shown that Rb is degraded through a proteasome-dependent pathway, yet the mechanism is largely unclear. MDM2 is frequently found amplified and overexpressed in a variety of human tumors. In this study, we find that MDM2 promotes Rb degradation in a proteasome-dependent and ubiquitin-independent manner. We show that Rb, MDM2, and the C8 subunit of the 20S proteasome interact in vitro and in vivo and that MDM2 promotes Rb-C8 interaction. Expression of wild-type MDM2, but not the mutant MDM2 defective either in Rb interaction or in RING finger domain, promotes cell cycle S phase entry independent of p53. Furthermore, MDM2 ablation results in Rb accumulation and inhibition of DNA synthesis. Taken together, these findings demonstrate that MDM2 is a critical negative regulator for Rb and suggest that MDM2 overexpression contributes to cancer development by destabilizing Rb. |
---|---|
ISSN: | 1097-2765 1097-4164 |
DOI: | 10.1016/j.molcel.2005.10.017 |