A novel strategy to design highly specific PCR primers based on the stability and uniqueness of 3′-end subsequences
Motivation: In contrast with conventional PCR using a pair of specific primers, some applications utilize a single unique primer in combination with a common primer, thereby relying solely on the former for specificity. These applications include rapid amplification of cDNA ends (RACE), adaptor-tagg...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2005-12, Vol.21 (24), p.4363-4370 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivation: In contrast with conventional PCR using a pair of specific primers, some applications utilize a single unique primer in combination with a common primer, thereby relying solely on the former for specificity. These applications include rapid amplification of cDNA ends (RACE), adaptor-tagged competitive PCR (ATAC-PCR), PCR-mediated genome walking and so forth. Since the primers designed by conventional methods often fail to work in these applications, an improved strategy is required, particularly, for a large-scale analysis. Results: Based on the structure of ‘off-target’ products in the ATAC-PCR, we reasoned that the practical determinant of the specificity of primers may not be the uniqueness of entire sequence but that of the shortest 3′-end subsequence that exceeds a threshold of duplex stability. We termed such a subsequence as a ‘specificity-determining subsequence’ (SDSS) and developed a simple algorithm to predict the performance of the primer: the algorithm identifies the SDSS of each primer and examines its uniqueness in the target genome. The primers designed using this algorithm worked much better than those designed using a conventional method in both ATAC-PCR and 5′-RACE experiments. Thus, the algorithm will be generally useful for improving various PCR-based applications. Availability: The source code of the program is available upon request from the authors or can be obtained from Supplementary information: Supplementary data are available at Bioinformatics online. Contact: ito@k.u-tokyo.ac.jp |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bti716 |