Highly efficient constant-current electroporation increases in vivo plasmid expression
Electroporation has been demonstrated as an effective technique for enhancing the delivery of plasmids coding for DNA vaccines and therapeutic proteins into skeletal muscle. Nevertheless, constant-voltage techniques do not take into account the resistance of the tissue and result in tissue damage, i...
Gespeichert in:
Veröffentlicht in: | DNA and cell biology 2005-12, Vol.24 (12), p.810-818 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electroporation has been demonstrated as an effective technique for enhancing the delivery of plasmids coding for DNA vaccines and therapeutic proteins into skeletal muscle. Nevertheless, constant-voltage techniques do not take into account the resistance of the tissue and result in tissue damage, inflammation, and loss of plasmid expression. In the present study, we have used a software-driven constant-current electroporator to deliver plasmids to mice and small and large pigs. The voltage, amperage, and resistance of the tissue during pulses were recorded and analyzed. Optimal conditions of electroporation were identified in both species, and found to be highly dependent on the individual tissue resistance. Six- to 10-week-old pigs had higher muscle resistance compared to 1- to 2-year-old pigs, but both values were four to five times lower than the resistance of the mouse muscle. In mice, optimum amperage, pulse length, and lag time between plasmid injection and electroporation were identified to be 0.1 Amps, 20 msec and 0 sec. The electroporation pulse pattern among the electrodes also affected plasmid expression. These results indicate that age- and tissue-specific resistance, pulse pattern, and other variables associated with the electroporation need to be optimized for each separate species to achieve maximum plasmid expression. |
---|---|
ISSN: | 1044-5498 1557-7430 |
DOI: | 10.1089/dna.2005.24.810 |