Radial-Position-Controlled Doping in CdS/ZnS Core/Shell Nanocrystals

In this paper, we report a new doping approach using a three-step synthesis to make high-quality Mn-doped CdS/ZnS core/shell nanocrystals. This approach allows precise control of the Mn radial position and doping level in the core/shell nanocrystals. On the basis of this synthetic advance, we have d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2006-09, Vol.128 (38), p.12428-12429
Hauptverfasser: Yang, Yongan, Chen, Ou, Angerhofer, Alexander, Cao, Y. Charles
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we report a new doping approach using a three-step synthesis to make high-quality Mn-doped CdS/ZnS core/shell nanocrystals. This approach allows precise control of the Mn radial position and doping level in the core/shell nanocrystals. On the basis of this synthetic advance, we have demonstrated the first example in which optical properties of Mn-doped nanocrystals strongly depend on Mn radial positions inside the nanocrystals. In addition, we have synthesized nanocrystals with a room-temperature Mn-emission quantum yield of 56%, which is nearly twice as high as that of the best Mn-doped nanocrystals reported previously. Nanocrystals with such a high-emission quantum yield are very important to applications such as nanocrystal-based biomedical diagnosis.
ISSN:0002-7863
1520-5126
DOI:10.1021/ja064818h