Correctability limitations imposed by plane-wave scintillation in multiconjugate adaptive optics
Plane-wave scintillation is shown to impose multiconjugate adaptive optics (MCAO) correctability limitations that are independent of wavefront sensing and reconstruction. Residual phase and log-amplitude variances induced by scintillation in weak turbulence are derived using linear (diffraction-base...
Gespeichert in:
Veröffentlicht in: | Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2006-10, Vol.23 (10), p.2602-2612 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plane-wave scintillation is shown to impose multiconjugate adaptive optics (MCAO) correctability limitations that are independent of wavefront sensing and reconstruction. Residual phase and log-amplitude variances induced by scintillation in weak turbulence are derived using linear (diffraction-based) diffractive MCAO spatial filters or (diffraction-ignorant) geometric MCAO proportional gains as open-loop control parameters. In the case of Kolmogorov turbulence, expressions involving the Rytov variance and/or weighted C(2)(n) integrals apply. Differences in performance between diffractive MCAO and geometric MCAO resemble chromatic errors. Optimal corrections based on least squares imply irreducible performance limits that are validated by wave-optic simulations. |
---|---|
ISSN: | 1084-7529 1520-8532 |
DOI: | 10.1364/JOSAA.23.002602 |