The Reduced Bactericidal Function of Complement C5-Deficient Murine Macrophages Is Associated with Defects in the Synthesis and Delivery of Reactive Oxygen Radicals to Mycobacterial Phagosomes
Complement C5-deficient (C5(-/-)) macrophages derived from B.10 congenic mice were found to be defective in killing intracellular Mycobacterium tuberculosis (MTB). They were bacteriostatic after activation with IFN-gamma alone but bactericidal in the combined presence of IFN-gamma and C5-derived C5a...
Gespeichert in:
Veröffentlicht in: | Journal of Immunology 2006-10, Vol.177 (7), p.4688-4698 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Complement C5-deficient (C5(-/-)) macrophages derived from B.10 congenic mice were found to be defective in killing intracellular Mycobacterium tuberculosis (MTB). They were bacteriostatic after activation with IFN-gamma alone but bactericidal in the combined presence of IFN-gamma and C5-derived C5a anaphylatoxin that was deficient among these macrophages. Reduced killing correlated with a decreased production of reactive oxygen species (ROS) in the C5(-/-) macrophages measured using fluorescent probes. Furthermore, a lack of colocalization of p47(phox) protein of the NADPH oxidase (phox) complex with GFP-expressing MTB (gfpMTB) indicated a defective assembly of the phox complex on phagosomes. Reconstitution with C5a, a known ROS activator, enhanced the assembly of phox complex on the phagosomes as well as the production of ROS that inhibited the growth of MTB. Protein kinase C (PKC) isoforms are involved in the phosphorylation and translocation of p47(phox) onto bacterial phagosomes. Western blot analysis demonstrated a defective phosphorylation of PKC (alpha, beta, delta) and PKC-zeta in the cytosol of C5(-/-) macrophages compared with C5 intact (C5(+/+)) macrophages. Furthermore, in situ fluorescent labeling of phagosomes indicated that PKC-beta and PKC-zeta were the isoforms that are not phosphorylated in C5(-/-) macrophages. Because Fc receptor-mediated phox assembly was normal in both C5(-/-) and C5(+/+) macrophages, the defect in phox assembly around MTB phagosomes was specific to C5 deficiency. Reduced bactericidal function of C5(-/-) macrophages thus appears to be due to a defective assembly and production of ROS that prevents effective killing of intracellular MTB. |
---|---|
ISSN: | 0022-1767 1550-6606 1365-2567 |
DOI: | 10.4049/jimmunol.177.7.4688 |