Differential Effects of Ca2+ and cAMP on Transcription Mediated by MEF2D and cAMP-response Element-binding Protein in Hippocampal Neurons

In neurons, the second messengers Ca2+ and cAMP are mediators of transcriptional responses that are important for the development and function of the nervous system. The pro-survival neuronal transcription factors cAMP-response elementbinding protein (CREB) and myocyte enhancer factor-2 (MEF2) both...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2006-09, Vol.281 (38), p.27724-27732
Hauptverfasser: Belfield, Johanna L., Whittaker, Chris, Cader, M. Zaeem, Chawla, Sangeeta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In neurons, the second messengers Ca2+ and cAMP are mediators of transcriptional responses that are important for the development and function of the nervous system. The pro-survival neuronal transcription factors cAMP-response elementbinding protein (CREB) and myocyte enhancer factor-2 (MEF2) both stimulate gene expression in response to activity-dependent increases in the concentration of intracellular Ca2+ ions. CREB is also activated by increases in intracellular cAMP. Here we have investigated whether the MEF2 family member MEF2D, similar to CREB, is also activated by cAMP in hippocampal neurons. We have shown that, unlike CREB, MEF2D is not activated by agents that increase intracellular cAMP. Moreover, increases in cAMP inhibit Ca2+-activated MEF2D-mediated gene expression. We have also shown that cAMP inhibits Ca2+-induced nuclear export of the MEF2 co-repressor HDAC5 and prevents Ca2+-stimulated nuclear import of the MEF2 co-activator NFAT3/c4. Our results suggest that cAMP interferes with MEF2D-mediated gene expression at multiple levels by antagonizing the derepression of MEF2D by HDAC5 and by inhibiting recruitment of the co-activator NFAT.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M601485200