Sleep and energy balance: interactive homeostatic systems

For early humans, acquisition of food by hunting and/or gathering was a hunger-driven process requiring vigilance and (often) strenuous physical effort during daylight hours. To sustain such activities, hunter-gatherers also needed periodic rest and sleep—pursuits most effectively undertaken at nigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Metabolism, clinical and experimental clinical and experimental, 2006-10, Vol.55 (10 Suppl 2), p.S30-S35
1. Verfasser: VanItallie, Theodore B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For early humans, acquisition of food by hunting and/or gathering was a hunger-driven process requiring vigilance and (often) strenuous physical effort during daylight hours. To sustain such activities, hunter-gatherers also needed periodic rest and sleep—pursuits most effectively undertaken at night. In recent years, research has given us new insights into the physiologic underpinnings of these behaviors. Specifically, evidence has been uncovered indicating that the homeostatic regulation of food intake on the one hand and that of sleep on the other hand, are intertwined. Thus, carefully performed studies of eating behavior in rats indicate that duration of sleep after ingestion of a meal is closely correlated to the meal's energy content. In 1999, it was discovered that mice and dogs functionally deficient in the appetite-stimulating hormone, hypocretin-1, become narcoleptic, suggesting the existence of a “hard-wired” connection between regulation of hunger and satiety and regulation of sleep. Administered into the nucleus accumbens shell, hypocretin-1 induces feeding and locomotor activity in Sprague-Dawley rats. Hypocretin neurons in the hypothalamus are responsive to metabolic cues capable of signaling nutritional status. The suprachiasmatic nucleus, the body's principal circadian clock, exchanges information with the hypocretin system about the light/dark cycle and the body's metabolic condition. Circadian Clock mutant mice exhibit an attenuated diurnal feeding rhythm and become hyperphagic and obese. Both disruption of the circadian cycle and sleep deprivation can affect energy balance and, over time, may bring about substantial changes in body composition. Although there is growing evidence that interleukin-6 and several other proinflammatory cytokines are “sleep factors” that also affect energy balance, any possible role they might have in coordinating sleep/wakefulness with food-motivated behavior awaits clarification. Yet, the evidence is increasingly strong that the neurophysiologic and metabolic mechanisms responsible for the control of food-seeking behavior and the control of sleep and wakefulness are coordinated so that hunger and vigilance are paired during the daylight hours, and satiety and sleep are paired during darkness. The hypothalamic neuronal system that links these mechanisms is predominantly, but not exclusively, hypocretinergic, and is responsive to the suprachiasmatic nucleus circadian pacemaker and to certain metabolic signals
ISSN:0026-0495
1532-8600
DOI:10.1016/j.metabol.2006.07.010