Cytotoxicity, cellular uptake and DNA damage by daunorubicin and its new analogues with modified daunosamine moiety

Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3' position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cell biology and toxicology 2005-05, Vol.21 (3-4), p.139-147
Hauptverfasser: Ciesielska, E, Studzian, K, Wasowska, M, Oszczapowicz, I, Szmigiero, L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Daunorubicin (DRB) and its two analogues containing a trisubstituted amidino group at the C-3' position of the daunosamine moiety have been compared regarding their cytotoxic activity, cellular uptake, subcellular localization and DNA damaging properties. An analogue containing in the amidino group a morpholine moiety (DRBM) as well as an analogue with a hexamethyleneimine moiety (DRBH), tested against cultured L1210 cells, exhibited lower cytotoxicity then DRB. The decrease of cytotoxic activity was not related to cellular uptake and subcellular localization of drugs. Although all tested drugs were active in the induction of DNA breaks and DNA-protein crosslinks, they differed in the mechanism of induction of DNA lesions. DRB produced DNA breaks mediated solely by topoisomerase II, whereas DRBM and DRBH induced two types of DNA breaks by two separate processes. The first is related to the inhibition of topoisomerase II and the second presumably reflects a covalent binding of drug metabolites to DNA. It is hypothesized that the replacement of the primary amino group (-NH(2)) at the C-3' position of the daunosamine moiety by a trisubstituted amidino group (-N=CH-NRR) may be a route to the synthesis of anthracycline derivatives with enhanced ability to form covalent adducts to DNA.
ISSN:0742-2091
1573-6822
DOI:10.1007/s10565-005-0142-1