Role of asparagine and asparagine synthetase genes in sunflower ( Helianthus annuus) germination and natural senescence

Sunflower ( Helianthus annuus) contains three active asparagine synthetase (EC 6.3.5.4, AS) genes: HAS1, HAS1.1 and HAS2. Asparagine content and AS gene expression were determined during germination and leaf and cotyledon natural senescence to assess the role of asparagine as well as the extent of p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of plant physiology 2006-10, Vol.163 (10), p.1061-1070
Hauptverfasser: Herrera-Rodríguez, María Begoña, Maldonado, José María, Pérez-Vicente, Rafael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Sunflower ( Helianthus annuus) contains three active asparagine synthetase (EC 6.3.5.4, AS) genes: HAS1, HAS1.1 and HAS2. Asparagine content and AS gene expression were determined during germination and leaf and cotyledon natural senescence to assess the role of asparagine as well as the extent of participation of each AS gene in different nitrogen mobilizing processes. Asparagine accumulated in the dry seed and was the predominant amide throughout germination. During cotyledon senescence, the asparagine level was slightly higher than that of glutamine. The opposite was true for leaf senescence. According to transcript accumulation data, most of the asparagine newly synthesized for germination and cotyledon expansion was due to HAS2 activity, with little contribution of the other AS genes. However, all three genes work together to synthesize asparagine for leaf senescence. The absence of significant AS gene expression in cotyledon senescence differentiates leaf and cotyledon senescence, and suggests a cotyledon-specific regulation.
ISSN:0176-1617
1618-1328
DOI:10.1016/j.jplph.2005.10.012