A 12-Station Anatomic Hip Joint Simulator
Abstract A novel 12-station hip joint simulator with an anatomic position of the prosthesis was designed and built. The motion of the simulator consists of flexion-extension and abduction-adduction. The load is of the double-peak type. The validation test was done with three similar 28 mm CoCr-polye...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine Journal of engineering in medicine, 2005-11, Vol.219 (6), p.437-448 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstract
A novel 12-station hip joint simulator with an anatomic position of the prosthesis was designed and built. The motion of the simulator consists of flexion-extension and abduction-adduction. The load is of the double-peak type. The validation test was done with three similar 28 mm CoCr-polyethylene joints in diluted calf serum lubricant for 3.3 × 106 cycles. The bearing surfaces of the polyethylene cups were burnished, the CoCr heads were undamaged, the wear particles were in the 0.1-1 μm size range, and the mean wear factor of the polyethylene cups was 5.7 × 10−7 mm3/N m. These essential observations were in good agreement with clinical findings. In addition, three similar 50 mm CoCR/CoCr joints, representing the contemporary large-diameter metal-on-metal articulation were tested. The wear of the CoCr/CoCr joints was calculated from the Co and Cr concentrations of the used lubricant quantified with atomic absorption spectroscopy. The bearing surfaces of the CoCr/CoCr jonits showed mild criss-cross scratching only. The average wear factor of polyethylene cups was 275 times that of the CoCr/CoCr joints. The tribological behaviour of the large-dia. CoCr/CoCr appeared to be dominated by fluid film lubrication, as indicated by very low frictional heating and wear, making it tribologically superior to the conventional CoCr/polyethylene, and therefore very interesting clinically. In conclusion, the simulator proved to be a valid, reliable, practical, economical, and easy-to-operate tool for wear studies of various hip replacement designs. |
---|---|
ISSN: | 0954-4119 2041-3033 |
DOI: | 10.1243/095441105X34419 |