Temporal cavity and pressure distribution in a brain simulant following ballistic penetration
To study ballistic brain injury biomechanics, two common civilian full metal jacket handgun projectiles (25-caliber and 9-mm) were discharged into a transparent brain simulant (Sylgard gel). Five pressure transducers were placed at the entry (two), exit (two) and center (one) of the simulant. High-s...
Gespeichert in:
Veröffentlicht in: | Journal of neurotrauma 2005-11, Vol.22 (11), p.1335-1347 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | To study ballistic brain injury biomechanics, two common civilian full metal jacket handgun projectiles (25-caliber and 9-mm) were discharged into a transparent brain simulant (Sylgard gel). Five pressure transducers were placed at the entry (two), exit (two) and center (one) of the simulant. High-speed digital video photography (20,000 frames/second) was used to capture the temporal cavity pulsation. Pressure histories and high-speed video images were synchronized with a common trigger. Pressure data were sampled at 308 kHz. The 25-caliber projectile had an entry velocity of 238 m/s and exit velocity of 170 m/s. The 9-mm projectile had an entry velocity of 379 m/s and exit velocity of 259 m/s. Kinetic energies lost during penetration were 45.2 J for the 25-caliber projectile and 283.7 J for the 9-mm. Size of temporary cavities and pressures were dependent on projectile size and velocity. The 9-mm projectile created temporary cavities 1.5 times larger in size and lasted 1.5 times longer than the 25-caliber projectile. The 9-mm projectile had pressures three times higher than the 25-caliber projectile. Pressure differences between the center location and surrounding regions were approximately 1.4 times higher and lasted about 1.6 times longer in the 9- mm projectile than the 25-caliber projectile. Collapsing of the temporary cavity drew the brain simulant toward the center of the temporary cavity and created negative pressures of approximately -0.5 atmospheric pressure in the surrounding region. Pressures reached approximately +2 atmospheric pressure when temporary cavities collapsed. These quantified data may assist in understanding injury biomechanics and management of penetration brain trauma. |
---|---|
ISSN: | 0897-7151 1557-9042 |
DOI: | 10.1089/neu.2005.22.1335 |