Atomic force microscopy observation of highly arrayed phospholipid bilayer vesicle on a gold surface
Tapping mode atomic force microscopy (TM-AFM) imaging of a phospholipid bilayer vesicle (liposome) immobilized on a gold surface was performed to investigate morphologies of the electrode surfaces produced through application of three different sample preparation methods. We compared both methods fr...
Gespeichert in:
Veröffentlicht in: | Journal of bioscience and bioengineering 2006-07, Vol.102 (1), p.28-33 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Tapping mode atomic force microscopy (TM-AFM) imaging of a phospholipid bilayer vesicle (liposome) immobilized on a gold surface was performed to investigate morphologies of the electrode surfaces produced through application of three different sample preparation methods. We compared both methods from a morphological viewpoint using TM-AFM images. Liposomes, composed of zwitterionic and anionic phospholipids, were prepared by extrusion. Results indicate that the surface with immobilized L1-liposome, which was fabricated by the amino coupling method, seemed to form large amounts of aggregated or fused liposomes. In contrast, L2-liposome-containing 1-octadecanthiol that was directly attached on the gold surface using thiol-gold binding force was immobilized as a uniform surface topology without liposome aggregation. Finally, we attempted to arrange individual L3-liposome, prepared by mixing zwitterionic and anionic phospholipids, onto the gold layer by electron-beam (e-beam) lithography technique. A third method, L3-liposome formation on the sensor surface, is greatly anticipated for biosensor applications. |
---|---|
ISSN: | 1389-1723 1347-4421 |
DOI: | 10.1263/jbb.102.28 |