Genetic mechanisms for the synthesis of fucosyl GM1 in small cell lung cancer cell lines

Fucosyl GM1 has been reported to be specifically expressed in small cell lung cancer (SCLC) cells. However, the genetic basis for the synthesis of fucosyl GM1 has not been investigated. We analyzed the glycosyltransferases responsible for the synthesis of fucosyl GM1 in SCLC cell lines. In four SCLC...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glycobiology (Oxford) 2006-10, Vol.16 (10), p.916-925
Hauptverfasser: Tokuda, Noriyo, Zhang, Qing, Yoshida, Shoko, Kusunoki, Susumu, Urano, Takeshi, Furukawa, Keiko, Furukawa, Koichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fucosyl GM1 has been reported to be specifically expressed in small cell lung cancer (SCLC) cells. However, the genetic basis for the synthesis of fucosyl GM1 has not been investigated. We analyzed the glycosyltransferases responsible for the synthesis of fucosyl GM1 in SCLC cell lines. In four SCLC cell lines expressing fucosyl GM1, both FUT1 and FUT2 mRNAs were detected, indicating that either one or both of α1,2-fucosyltransferases may be involved in the expression of fucosyl GM1. However, three of these four lines contained function-loss mutations in the FUT2 coding region, suggesting that FUT1 is mainly involved in the α1,2-fucosylation of GM1. The expression levels of the GM1 synthase gene showed no correlation with those of fucosyl GM1, whereas the co-transfection of GM1 synthase cDNA with FUT1 or FUT2 into SK-LC-17 clearly enhanced the neo-expression of fucosyl GM1, indicating its essential role. In contrast, the co-transfection of GD3 synthase cDNA reduced the expression levels of fucosyl GM1 with FUT1 or FUT2. Consequently, FUT1 seems to mainly contribute to the expression of fucosyl GM1, although both FUT1 and FUT2 are capable of generating the antigen. These results should promote the functional analysis of fucosyl GM1 leading to the development of novel therapies for SCLC.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cwl022