Uptake of sodium in protoplasts of salt-sensitive and salt-tolerant cultivars of rice, Oryza sativa L. determined by the fluorescent dye SBFI
In this study, the uptake of Na+ into the cytosol of rice (Oryza sativa L. cvs Pokkali and BRRI Dhan29) protoplasts was measured using the acetoxy methyl ester of the fluorescent sodium-binding benzofuran isopthalate, SBFI-AM, and fluorescence microscopy. By means of inhibitor analyses the mechanism...
Gespeichert in:
Veröffentlicht in: | Journal of experimental botany 2005-12, Vol.56 (422), p.3149-3158 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this study, the uptake of Na+ into the cytosol of rice (Oryza sativa L. cvs Pokkali and BRRI Dhan29) protoplasts was measured using the acetoxy methyl ester of the fluorescent sodium-binding benzofuran isopthalate, SBFI-AM, and fluorescence microscopy. By means of inhibitor analyses the mechanisms for uptake and sequestration of Na+ in the salt-sensitive indica rice cv. BRRI Dhan29 and in the salt-tolerant indica rice cv. Pokkali were detected. Less Na+ was taken up into the cytosol of Pokkali than into BRRI Dhan29. The results indicate that K+-selective channels do not contribute to the Na+ uptake in Pokkali, whereas they are the major pathways for Na+ uptake in BRRI Dhan29 along with non-selective cation channels. However, non-selective cation channels seem to be the main pathways for Na+ uptake in Pokkali. Protoplasts from Pokkali leaves took up Na+ only transiently in the presence of extracellular Na+ at 5–100 mM. Therefore, it is likely that the protoplasts have a mechanism for fast extrusion of Na+ out of the cytoplasm. Experiments with protoplasts pretreated with NH4NO3 and NH4VO3 suggest that the salt-tolerant Pokkali extrudes Na+ mainly into the vacuole. After cultivation of both cultivars in the presence of 10 or 50 mM NaCl for 72 h, the isolated protoplasts from Pokkali took up less Na+ than the control protoplasts. The results suggest that the salt-tolerance in Pokkali depends on reduced uptake through K+-selective channels and a fast extrusion of Na+ into the vacuoles. |
---|---|
ISSN: | 0022-0957 1460-2431 |
DOI: | 10.1093/jxb/eri312 |