A tetrapeptide-based method for polyproline II-type secondary structure prediction
We describe a new method for polyproline II‐type (PPII) secondary structure prediction based on tetrapeptide conformation properties using data obtained from all globular proteins in the Protein Data Bank (PDB). This is the first method for PPII prediction with a relatively high level of accuracy (∼...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2005-12, Vol.61 (4), p.763-768 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a new method for polyproline II‐type (PPII) secondary structure prediction based on tetrapeptide conformation properties using data obtained from all globular proteins in the Protein Data Bank (PDB). This is the first method for PPII prediction with a relatively high level of accuracy (∼60%). Our method uses only frequencies of different conformations among oligopeptides without any additional parameters. We also attempted to predict α‐helices and β‐strands using the same approach. We find that the application of our method reveals interrelation between sequence and structure even for very short oligopeptides (tetrapeptides). Proteins 2005. © 2005 Wiley‐Liss, Inc. |
---|---|
ISSN: | 0887-3585 1097-0134 |
DOI: | 10.1002/prot.20670 |