Discovering hidden viral piracy
Motivation: Viruses and developers of anti-inflammatory therapies share a common interest in proteins that manipulate the immune response. Large double-stranded DNA viruses acquire host proteins to evade host defense mechanisms. Hence, viral pirated proteins may have a therapeutic potential. Althoug...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2005-12, Vol.21 (23), p.4216-4222 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Motivation: Viruses and developers of anti-inflammatory therapies share a common interest in proteins that manipulate the immune response. Large double-stranded DNA viruses acquire host proteins to evade host defense mechanisms. Hence, viral pirated proteins may have a therapeutic potential. Although dozens of viral piracy events have already been identified, we hypothesized that sequence divergence impedes the discovery of many others. Results: We developed a method to assess the number of viral/human homologs and discovered that at least 917 highly diverged homologs are hidden in low-similarity alignment hits that are usually ignored. However, these low-similarity homologs are masked by many false alignment hits. We therefore applied a filtering method to increase the proportion of viral/human homologous proteins. The homologous proteins we found may facilitate functional annotation of viral and human proteins. Furthermore, some of these proteins play a key role in immune modulation and are therefore therapeutic protein candidates. Contact: kliger@compugen.co.il |
---|---|
ISSN: | 1367-4803 1460-2059 1367-4811 |
DOI: | 10.1093/bioinformatics/bti706 |