Uric acid and anti‐TNF antibody improve mitochondrial dysfunction in ob/ob mice

The mechanisms responsible for low mitochondrial respiratory chain (MRC) activity in the liver of patients with nonalcoholic steatohepatitis are unknown. In this study, we examined the cause of this dysfunction in ob/ob mice. Forty‐six mice were distributed in six groups: group I: C57BL/6J mice; gro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hepatology (Baltimore, Md.) Md.), 2006-09, Vol.44 (3), p.581-591
Hauptverfasser: García‐Ruiz, Inmaculada, Rodríguez‐Juan, Cristina, Díaz‐Sanjuan, Teresa, del Hoyo, Pilar, Colina, Francisco, Muñoz‐Yagüe, Teresa, Solís‐Herruzo, José A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The mechanisms responsible for low mitochondrial respiratory chain (MRC) activity in the liver of patients with nonalcoholic steatohepatitis are unknown. In this study, we examined the cause of this dysfunction in ob/ob mice. Forty‐six mice were distributed in six groups: group I: C57BL/6J mice; group II: C57BL/6J Lep(−/−) mice (ob/ob); group III, ob/ob mice treated with manganese [III] tetrakis (5,10,15,20 benzoic acid) porphyrin (MnTBAP); group IV, ob/ob mice treated with IgG1 immunoglobulin; group V, ob/ob mice treated with anti‐TNF antibody; group VI: ob/ob mice treated with uric acid. In liver tissue, we measured MRC activity, fatty acid β‐oxidation, tumor necrosis factor (TNF), inducible nitric oxide synthase (iNOS), 3‐tyrosine‐nitrated proteins, 3‐tyrosine‐nitrated mitochondrial proteins, including cytochrome c and ND4 subunit of complex I. MRC activity was decreased in ob/ob mice. TNF levels, iNOS protein expression, and tyrosine nitrated proteins were markedly increased in the liver of ob/ob mice. In these animals, mitochondrial proteins were markedly tyrosine nitrated, particularly the ND4 subunit of complex I and cytochrome c. Treatment of these animals with uric acid, a peroxynitrite scavenger, anti‐TNF antibody, or MnTBAP decreased tyrosine nitrated proteins, improved the activity of MRC complexes, and led to a marked regression of hepatic steatosis and inflammation. In conclusion, MRC dysfunction and liver lesions found in ob/ob mice are likely to reflect the tyrosine nitration of mitochondrial proteins by peroxynitrite or a peroxynitrite‐derivate radical. Increased hepatic TNF and iNOS expression might enhance peroxynitrite formation and inhibition of MRC complexes. (HEPATOLOGY 2006;44:581–591.)
ISSN:0270-9139
1527-3350
DOI:10.1002/hep.21313