Association of mammalian sterile twenty kinases, Mst1 and Mst2, with hSalvador via C‐terminal coiled‐coil domains, leads to its stabilization and phosphorylation

Genetic screens in Drosophila have revealed that the serine/threonine kinase Hippo (Hpo) and the scaffold protein Salvador participate in a pathway that controls cell proliferation and apoptosis. Hpo most closely resembles the pro‐apoptotic mammalian sterile20 kinases 1 and 2 (Mst1 and 2), and Salva...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The FEBS journal 2006-09, Vol.273 (18), p.4264-4276
Hauptverfasser: Callus, Bernard A., Verhagen, Anne M., Vaux, David L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Genetic screens in Drosophila have revealed that the serine/threonine kinase Hippo (Hpo) and the scaffold protein Salvador participate in a pathway that controls cell proliferation and apoptosis. Hpo most closely resembles the pro‐apoptotic mammalian sterile20 kinases 1 and 2 (Mst1 and 2), and Salvador (Sav) has a human orthologue hSav (also called hWW45). Here we show that Mst and hSav heterodimerize in an interaction requiring the conserved C‐terminal coiled‐coil domains of both proteins. hSav was also able to homodimerize, but this did not require its coiled‐coil domain. Coexpression of Mst and hSav led to phosphorylation of hSav and also increased its abundance. In vitro phosphorylation experiments indicate that the phosphorylation of Sav by Mst is direct. The stabilizing effect of Mst was much greater on N‐terminally truncated hSav mutants, as long as they retained the ability to bind Mst. Mst mutants that lacked the C‐terminal coiled‐coil domain and were unable to bind to hSav, also failed to stabilize or phosphorylate hSav, whereas catalytically inactive Mst mutants that retained the ability to bind to hSav were still able to increase its abundance, although they were no longer able to phosphorylate hSav. Together these results show that hSav can bind to, and be phosphorylated by, Mst, and that the stabilizing effect of Mst on hSav requires its interaction with hSav but is probably not due to phosphorylation of hSav by Mst.
ISSN:1742-464X
1742-4658
DOI:10.1111/j.1742-4658.2006.05427.x