Derivation and large-scale expansion of multipotent astroglial neural progenitors from adult human brain
The isolation and expansion of human neural cell types has become increasingly relevant in restorative neurobiology. Although embryonic and fetal tissue are frequently envisaged as providing sufficiently primordial cells for such applications, the developmental plasticity of endogenous adult neural...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 2006-09, Vol.133 (18), p.3671-3681 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The isolation and expansion of human neural cell types has become increasingly relevant in restorative neurobiology. Although embryonic and fetal tissue are frequently envisaged as providing sufficiently primordial cells for such applications, the developmental plasticity of endogenous adult neural cells remains largely unclear. To examine the developmental potential of adult human brain cells, we applied conditions favoring the growth of neural stem cells to multiple cortical regions, resulting in the identification and selection of a population of adult human neural progenitors (AHNPs). These nestin + progenitors may be derived from multiple forebrain regions, are maintainable in adherent conditions, co-express multiple glial and immature markers, and are highly expandable, allowing a single progenitor to theoretically form sufficient cells forâ¼ 4Ã10 7 adult brains. AHNPs longitudinally maintain the ability to generate both glial and neuronal cell types in vivo and in vitro, and are amenable to genetic modification and transplantation. These findings suggest an unprecedented degree of inducible plasticity is retained by cells of the adult central nervous system. |
---|---|
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.02541 |