An Investigation of the Divergence of Major Ampullate Silk Fibers from Nephila clavipes and Argiope aurantia

The major ampullate fiber of both Nephila clavipes and Argiope aurantia is composed of two different proteins, MaSp1 and MaSp2. Each of these proteins has a highly conserved pattern of silk-associated amino acid motifs. The GPGXX motif is the only source of proline and is unique to MaSp2. On the bas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biomacromolecules 2005-11, Vol.6 (6), p.3095-3099
Hauptverfasser: Brooks, Amanda E, Steinkraus, Holly B, Nelson, Shane R, Lewis, Randolph V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The major ampullate fiber of both Nephila clavipes and Argiope aurantia is composed of two different proteins, MaSp1 and MaSp2. Each of these proteins has a highly conserved pattern of silk-associated amino acid motifs. The GPGXX motif is the only source of proline and is unique to MaSp2. On the basis of the percent of proline, Nephila clavipes major ampullate silk was calculated to consist of 19% MaSp2 and 81% MaSp1, while Argiope aurantia was calculated to have a significantly higher MaSp2 content of 59% with MaSp1 comprising the remaining 41%. To investigate the functional implications of the difference in protein composition, major ampullate silk fibers from Nephila clavipes and Argiope aurantia were mechanically tested and compared. Stress−strain curves produced from polynomial regression show that the two significant differences between major ampullate silk fibers from Nephila clavipes and Argiope aurantia are the average peak load stress and Young's modulus, with Argiope higher for both.
ISSN:1525-7797
1526-4602
DOI:10.1021/bm050421e