Classifying wine according to geographical origin via quadrupole-based ICP-mass spectrometry measurements of boron isotope ratios

The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical and bioanalytical chemistry 2005-11, Vol.383 (6), p.977-984
Hauptverfasser: Coetzee, Paul P, Vanhaecke, Frank
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of quadrupole-based ICP-MS as a tool for B-isotopic analysis of wines and its usefulness in provenance determinations were assessed. A precision of 0.1-0.25% RSD (corresponding to a relative standard deviation of the mean of three replicate measurements of 0.06-0.12%) was sufficient to establish small differences in the B isotope ratios in wines from different geographical origins. Each sample measurement was bracketed by measurements of a standard and mass bias drift correction made by interpolation. Sample preparation was kept to a minimum to avoid possible fractionation. Dilution of the wine samples by a factor of 100 with 0.65% HNO3 was found to reduce matrix-induced mass discrimination substantially. Wines from three wine-producing regions, Stellenbosch, Robertson, and Swartland, in the Western Cape Province of South Africa, and wines from specific regions in France (Bergerac) and Italy (Valpolicella) were analyzed by ICP-QMS for their B-isotopic compositions. It was concluded that the 11B/10B ratios can be used to characterize wines from different geographical origins. Average 11B/10B ratios in red wines from South Africa (Stellenbosch), France (Bergerac), and Italy (Valpolicella) were found to differ by between 0.5 and 1.5%.
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-005-0093-7