First-principles investigation of finite-temperature behavior in small sodium clusters

A systematic and detailed investigation of the finite-temperature behavior of small sodium clusters, Na(n), in the size range of n=8-50 are carried out. The simulations are performed using density-functional molecular dynamics with ultrasoft pseudopotentials. A number of thermodynamic indicators suc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2005-10, Vol.123 (16), p.164310-164310
Hauptverfasser: Lee, Mal-Soon, Chacko, S, Kanhere, D G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A systematic and detailed investigation of the finite-temperature behavior of small sodium clusters, Na(n), in the size range of n=8-50 are carried out. The simulations are performed using density-functional molecular dynamics with ultrasoft pseudopotentials. A number of thermodynamic indicators such as specific heat, caloric curve, root-mean-square bond-length fluctuation, deviation energy, etc., are calculated for each of the clusters. Size dependence of these indicators reveals several interesting features. The smallest clusters with n=8 and 10 do not show any signature of melting transition. With the increase in size, broad peak in the specific heat is developed, which alternately for larger clusters evolves into a sharper one, indicating a solidlike to liquidlike transition. The melting temperatures show an irregular pattern similar to the experimentally observed one for larger clusters [Schmidt et al., Nature (London) 393, 238 (1998)]. The present calculations also reveal a remarkable size-sensitive effect in the size range of n=40-55. While Na(40) and Na(55) show well-developed peaks in the specific-heat curve, Na(50) cluster exhibits a rather broad peak, indicating a poorly defined melting transition. Such a feature has been experimentally observed for gallium and aluminum clusters [Breaux et al., J. Am. Chem. Soc. 126, 8628 (2004); Breaux et al., Phys. Rev. Lett. 94, 173401 (2005)].
ISSN:0021-9606
1089-7690
DOI:10.1063/1.2076607