The adaptive filter of the yeast galactose pathway
In the yeast Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical biology 2006-09, Vol.242 (2), p.372-381 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the yeast
Saccharomyces cerevisiae, the interplay between galactose, Gal3p, Gal80p and Gal4p determines the transcriptional status of the genes required for galactose utilization. After an increase in galactose concentration, galactose molecules bind onto Gal3p. This event leads via Gal80p to the activation of Gal4p, which then induces
GAL3 and
GAL80 gene transcription. Here we propose a qualitative dynamical model, whereby these molecular interaction events represent the first two stages of a functional feedback loop that closes with the capture of activated Gal4p by newly synthesized Gal3p and Gal80p, decreasing transcriptional activation and creating again the protein complex that can bind incoming galactose molecules. Based on the differential time-scales of faster protein interactions versus slower biosynthetic steps, this feedback loop functions as a derivative filter where galactose is the input step signal, and released Gal4p is the output derivative signal. One advantage of such a derivative filter is that
GAL genes are expressed in proportion to cellular requirements. Furthermore, this filter adaptively protects the cellular receptors from saturation by galactose, allowing cells to remain sensitive to variations in galactose concentrations rather than to absolute concentrations. Finally, this feedback loop, by allowing phosphorylation of some active Gal4p, may be essential to initiate the subsequent long-term response. |
---|---|
ISSN: | 0022-5193 1095-8541 |
DOI: | 10.1016/j.jtbi.2006.03.005 |