Stepwise Differentiation of CD4 Memory T Cells Defined by Expression of CCR7 and CD27

To study the steps in the differentiation of human memory CD4 T cells, we characterized the functional and lineage relationships of three distinct memory CD4 subpopulations distinguished by their expression of the cysteine chemokine receptor CCR7 and the TNFR family member CD27. Using the combinatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Immunology 2005-11, Vol.175 (10), p.6489-6497
Hauptverfasser: Fritsch, Ruth D, Shen, Xinglei, Sims, Gary P, Hathcock, Karen S, Hodes, Richard J, Lipsky, Peter E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To study the steps in the differentiation of human memory CD4 T cells, we characterized the functional and lineage relationships of three distinct memory CD4 subpopulations distinguished by their expression of the cysteine chemokine receptor CCR7 and the TNFR family member CD27. Using the combination of these phenotypic markers, three populations were defined: the CCR7+CD27+, the CCR7-CD27+, and the CCR7-CD27- population. In vitro stimulation led to a stepwise differentiation from naive to CCR7+CD27+ to CCR7-CD27+ to CCR7-CD27-. Telomere length in these subsets differed significantly (CCR7+CD27+ > CCR7-CD27+ > CCR7-CD27-), suggesting that these subsets constituted a differentiative pathway with progressive telomere shortening reflecting antecedent in vivo proliferation. The in vitro proliferative response of these populations declined, and their susceptibility to apoptosis increased progressively along this differentiation pathway. Cytokine secretion showed a differential functional capacity of these subsets. High production of IL-10 was only observed in CCR7+CD27+, whereas IFN-gamma was produced by CCR7-CD27+ and to a slightly lesser extent by CCR7-CD27- T cells. IL-4 secretion was predominantly conducted by CCR7-CD27- memory CD4 T cells. Thus, by using both CCR7 and CD27, distinct maturational stages of CD4 memory T cells with different functional activities were defined.
ISSN:0022-1767
1550-6606
1365-2567
DOI:10.4049/jimmunol.175.10.6489