Mechanistic Study of Electrocatalytic Oxidation of Formic Acid at Platinum in Acidic Solution by Time-Resolved Surface-Enhanced Infrared Absorption Spectroscopy

Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of physical chemistry. B 2006-08, Vol.110 (33), p.16559-16566
Hauptverfasser: Samjeské, Gabor, Miki, Atsushi, Ye, Shen, Osawa, Masatoshi
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Surface-enhanced infrared absorption spectroscopy (SEIRAS) combined with cyclic voltammetry or chronoamperometry has been utilized to examine kinetic and mechanistic aspects of the electrocatalytic oxidation of formic acid on a polycrystalline Pt surface at the molecular scale. Formate is adsorbed on the electrode in a bridge configuration in parallel to the adsorption of linear and bridge CO produced by dehydration of formic acid. A solution-exchange experiment using isotope-labeled formic acids (H12COOH and H13COOH) reveals that formic acid is oxidized to CO2 via adsorbed formate and the decomposition (oxidation) of formate to CO2 is the rate-determining step of the reaction. The adsorption/oxidation of CO and the oxidation/reduction of the electrode surface strongly affect the formic acid oxidation by blocking active sites for formate adsorption and also by retarding the decomposition of adsorbed formate. The interplay of the involved processes also affects the kinetics and complicates the cyclic voltammograms of formic acid oxidation. The complex voltammetric behavior is comprehensively explained at the molecular scale by taking all these effects into account.
ISSN:1520-6106
1520-5207
DOI:10.1021/jp061891l