Live Vaccine Strain Francisella tularensis Is Detectable at the Inoculation Site but Not in Blood after Vaccination against Tularemia
Introduction. Live vaccine strain (LVS) Francisella tularensis is a live, attenuated investigational tularemia vaccine that has been used by the US Army for decades to protect laboratory workers. Postvaccination bacterial kinetic characteristics of LVS at the inoculation site and in the blood are un...
Gespeichert in:
Veröffentlicht in: | Clinical infectious diseases 2006-09, Vol.43 (6), p.711-716 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Introduction. Live vaccine strain (LVS) Francisella tularensis is a live, attenuated investigational tularemia vaccine that has been used by the US Army for decades to protect laboratory workers. Postvaccination bacterial kinetic characteristics of LVS at the inoculation site and in the blood are unknown and, therefore, were assessed in a prospective study. LVS vaccination of laboratory workers provided the opportunity to compare culture with polymerase chain reaction (PCR) for the detection of F. tularensis in human clinical samples. Methods. Blood and skin swab samples were prospectively collected from volunteers who received the LVS tularemia vaccine at baseline (negative controls) and at 5 specified time points (days 1, 2, 7 or 8, 14 or 15, and 35 after vaccination). Bacterial culture and PCR of whole blood samples (17 volunteers) and inoculation site swabs (41 volunteers) were performed. Results. The culture and PCR results of all blood samples were negative. Results of real-time PCR from the inoculation site samples were positive for 41 (100%) of 41 volunteers on day 1, for 40 (97.6%) of 41 volunteers on day 2, for 24 (58.5%) of 41 on day 7 or 8, for 6 (16.7%) of 36 on day 14 or 15, and for 0 (0%) of 9 on day 35. Positive results of bacterial cultures of the inoculation site samples occurred significantly less frequently, compared with PCR testing, with 4 (9.8%) of 41 volunteers having positive results on day 1 (P < .001) and 4 (9.8%) of 41 on day 2 (P < .001); all results from subsequent days were negative. Conclusions. F. tularensis LVS genomic DNA was detected in the majority of samples from the inoculation site up to 1 week after LVS vaccination, with real-time PCR being more sensitive than culture. Our data suggest that bacteremia does not occur after LVS vaccination in normal, healthy human volunteers. |
---|---|
ISSN: | 1058-4838 1537-6591 |
DOI: | 10.1086/506348 |