11 beta-hydroxysteroid dehydrogenase type 1 induction in the arcuate nucleus by high-fat feeding: A novel constraint to hyperphagia?

11 beta-Hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) catalyzes regeneration of active intracellular glucocorticoids in fat, liver, and discrete brain regions. Although overexpression of 11 beta-HSD1 in adipose tissue causes hyperphagia and the metabolic syndrome, male 11 beta-HSD1 null (11 bet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Endocrinology (Philadelphia) 2006-09, Vol.147 (9), p.4486-4495
Hauptverfasser: Densmore, Valerie S, Morton, Nicholas M, Mullins, John J, Seckl, Jonathan R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:11 beta-Hydroxysteroid dehydrogenase type 1 (11 beta-HSD1) catalyzes regeneration of active intracellular glucocorticoids in fat, liver, and discrete brain regions. Although overexpression of 11 beta-HSD1 in adipose tissue causes hyperphagia and the metabolic syndrome, male 11 beta-HSD1 null (11 beta-HSD1-/-) mice resist metabolic disease on high-fat (HF) diet, but also show hyperphagia. This suggests 11 beta-HSD1 may influence the central actions of glucocorticoids on appetite and perhaps energy balance. We show that 11 beta-HSD1-/- mice express lower hypothalamic mRNA levels of the anorexigenic cocaine and amphetamine-regulated transcript and melanocortin-4 receptor, but higher levels of the orexigenic melanin-concentrating hormone mRNAs than controls (C57BL/6J) on a low-fat diet (11% fat). HF (58% fat) diet promoted transient ( approximately 8 wk) hyperphagia and decreased food efficiency in 11 beta-HSD1-/- mice and decreased melanocortin-4 receptor mRNA expression in control but not 11 beta-HSD1-/- mice. 11 beta-HSD1-/- mice showed a HF-mediated up-regulation of the orexigenic agouti-related peptide (AGRP) mRNA in the arcuate nucleus which paralleled the transient HF hyperphagia. Conversely, control mice showed a rapid (48 h) HF-mediated increase in arcuate 11 beta-HSD1 associated with subsequent down-regulation of AGRP. This regulatory pattern was unexpected because glucocorticoids increase AGRP, suggesting an alternate hyperphagic mechanism despite partial colocalization of 11 beta-HSD1 and AGRP in arcuate nucleus cells. One major alternate mechanism governing selective fat ingestion and the AGRP system is endogenous opioids. Treatment of HF-fed mice with the mu opioid agonist DAMGO recapitulated the HF-induced dissociation of arcuate AGRP expression between control and 11 beta-HSD1-/- mice, whereas the opioid antagonist naloxone given with HF induced a rise in arcuate AGRP and blocked HF-diet induction of 11 beta-HSD1. These data suggest that 11 beta-HSD1 in brain plays a role in the adaptive restraint of excess fat intake, in part by increasing inhibitory opioid tone on AGRP expression in the arcuate nucleus.
ISSN:0013-7227
DOI:10.1210/en.2006-0106