Evaluation of milk somatic cells as a source of mRNA for study of lipogenesis in the mammary gland of lactating beef cows supplemented with dietary high-linoleate safflower seeds

Our objectives were 2-fold: to determine the effect of dietary linoleate on milk fat composition and on transcript abundance of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL), and stearoyl-CoA desaturase (SCD) mRNA in mammary tissue, and to evaluate milk somatic ce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of animal science 2006-09, Vol.84 (9), p.2399-2405
Hauptverfasser: Murrieta, C.M, Hess, B.W, Scholljegerdes, E.J, Engle, T.E, Hossner, K.L, Moss, G.E, Rule, D.C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Our objectives were 2-fold: to determine the effect of dietary linoleate on milk fat composition and on transcript abundance of acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), lipoprotein lipase (LPL), and stearoyl-CoA desaturase (SCD) mRNA in mammary tissue, and to evaluate milk somatic cell mRNA as a source of mammary tissue mRNA for these enzymes. Eighteen primiparous, crossbred beef cows (BW = 411 ± 24 kg; BCS = 5.25) were offered Foxtail millet hay at 1.68% of BW daily and either a low-fat control (n = 9) or a high-linoleate (79% 18:2n-6), cracked safflower seed supplement (n = 9). Diets were isonitrogenous and isocaloric, and the linoleate diet contained 5.4% of DMI as fat. At slaughter (37 ± 3 d postpartum), mammary tissue was sampled and immediately frozen in liquid N₂ before being stored at -80°C. Milk samples were obtained from the same mammary glands and immediately centrifuged at 1,200 x g to pellet somatic cells. A ribonuclease protection assay was used to quantify the mRNA in the mammary gland and milk somatic cells. Effects of diet, tissue, or their interaction were not observed for ACC (P = 0.28, 0.89, and 0.35, respectively), FAS (P = 0.38, 0.66, and 0.20, respectively), LPL (P = 0.09, 0.15, and 0.43, respectively), or SCD (P = 0.45, 0.19, and 0.29, respectively). Dietary effects on fatty acid profile of the milk fat suggested that linoleate supplementation might have decreased de novo lipogenesis while increasing uptake of dietary fatty acids; this effect was consistent with a trend toward greater LPL mRNA for linoleate-fed cows (P = 0.09). Correlations (r values) between mammary tissue and milk somatic cell data for each mRNA for the low-fat control diet were: ACC, 0.76 (P = 0.02); FAS, 0.69 (P = 0.04); LPL, 0.68 (P = 0.04); and SCD, 0.73 (P = 0.05), and for the linoleate diet were: ACC, 0.85 (P = 0.003); FAS, 0.75 (P = 0.02); LPL, 0.90 (P = 0.001); and SCD, 0.73 (P = 0.03). We conclude that milk somatic cells obtained from lactating beef cows can be used as a source of RNA to study nutritional regulation of mammary gland lipogenesis in cows fed dietary fat supplements.
ISSN:0021-8812
1525-3163
DOI:10.2527/jas.2005-677