Sequence-Specific, Electronic Detection of Oligonucleotides in Blood, Soil, and Foodstuffs with the Reagentless, Reusable E-DNA Sensor

The ability to detect specific oligonucleotides in complex, contaminant-ridden samples, without the use of exogenous reagents and using a reusable, fully electronic platform could revolutionize the detection of pathogens in the clinic and in the field. Here, we characterize a label-free, electronic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2006-08, Vol.78 (16), p.5671-5677
Hauptverfasser: Lubin, Arica A, Lai, Rebecca Y, Baker, Brian R, Heeger, Alan J, Plaxco, Kevin W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The ability to detect specific oligonucleotides in complex, contaminant-ridden samples, without the use of exogenous reagents and using a reusable, fully electronic platform could revolutionize the detection of pathogens in the clinic and in the field. Here, we characterize a label-free, electronic sensor, termed E-DNA, for its ability to simultaneously meet these challenging demands. We find that because signal generation is coupled to a hybridization-linked conformational change, rather than to only adsorption to the sensor surface, E-DNA is selective enough to detect oligonucleotides in complex, multicomponent samples, such as blood serum and soil. Moreover, E-DNA signaling is monotonically related to target complementarity, allowing the sensor to discriminate between mismatched targets:  we readily detect the complementary 17-base target against a 50 000-fold excess of genomic DNA, can distinguish a three-base mismatch from perfect target directly in blood serum, and under ideal conditions, observe statistically significant differences between single-base mismatches. Finally, because the sensing components are linked to the electrode surface, E-DNA is reusable:  a 30-s room temperature wash recovers >99% of the sensor signal. This work further supports the utility of E-DNA as a rapid, specific, and convenient method for the detection of DNA and RNA sequences.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0601819