Agonistic properties of cannabidiol at 5-HT1a receptors
Cannabidiol (CBD) is a major, biologically active, but psycho-inactive component of cannabis. In this cell culture-based report, CBD is shown to displace the agonist, [3H]8-OH-DPAT from the cloned human 5-HT1a receptor in a concentration-dependent manner. In contrast, the major psychoactive componen...
Gespeichert in:
Veröffentlicht in: | Neurochemical research 2005-08, Vol.30 (8), p.1037-1043 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cannabidiol (CBD) is a major, biologically active, but psycho-inactive component of cannabis. In this cell culture-based report, CBD is shown to displace the agonist, [3H]8-OH-DPAT from the cloned human 5-HT1a receptor in a concentration-dependent manner. In contrast, the major psychoactive component of cannabis, tetrahydrocannabinol (THC) does not displace agonist from the receptor in the same micromolar concentration range. In signal transduction studies, CBD acts as an agonist at the human 5-HT1a receptor as demonstrated in two related approaches. First, CBD increases [35S]GTPgammaS binding in this G protein coupled receptor system, as does the known agonist serotonin. Second, in this GPCR system, that is negatively coupled to cAMP production, both CBD and 5-HT decrease cAMP concentration at similar apparent levels of receptor occupancy, based upon displacement data. Preliminary comparative data is also presented from the cloned rat 5-HT2a receptor suggesting that CBD is active, but less so, relative to the human 5-HT1a receptor, in binding analyses. Overall, these studies demonstrate that CBD is a modest affinity agonist at the human 5-HT1a receptor. Additional work is required to compare CBD's potential at other serotonin receptors and in other species. Finally, the results indicate that cannabidiol may have interesting and useful potential beyond the realm of cannabinoid receptors. |
---|---|
ISSN: | 0364-3190 1573-6903 |
DOI: | 10.1007/s11064-005-6978-1 |