Label-Free Detection of Peptide Nucleic Acid−DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor
The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2005-11, Vol.77 (21), p.6976-6984 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA−DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package. |
---|---|
ISSN: | 0003-2700 1520-6882 |
DOI: | 10.1021/ac0513459 |