Label-Free Detection of Peptide Nucleic Acid−DNA Hybridization Using Localized Surface Plasmon Resonance Based Optical Biosensor

The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2005-11, Vol.77 (21), p.6976-6984
Hauptverfasser: Endo, Tatsuro, Kerman, Kagan, Nagatani, Naoki, Takamura, Yuzuru, Tamiya, Eiichi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of label-free optical biosensors for DNA and other biomolecules has the potential to impact life sciences as well as screening in medical and environmental applications. In this report, we developed a localized surface plasmon resonance (LSPR) based label-free optical biosensor based on a gold-capped nanoparticle layer substrate immobilized with peptide nucleic acids (PNAs). PNA probe was designed to recognize the target DNA related to tumor necrosis factor. The nanoparticle layer was formed on a gold-deposited glass substrate by the surface modified silica nanoparticles using silane-coupling reagent. The optical properties of gold-capped nanoparticle layer substrate were characterized through monitoring the changes in the absorbance strength, as the thickness of the biomolecular layer increased with hybridization. The detection of PNA−DNA hybridization with target oligonucleotides and PCR-amplified real samples were performed with a limit of detection value of 0.677 pM target DNA. Selective discrimination against a single-base mismatch was also achieved. Our LSPR-based biosensor with the gold-capped nanoparticle layer substrate is applicable to the design of biosensors for monitoring of the interaction of other biomolecules, such as proteins, whole cells, or receptors with a massively parallel detection capability in a highly miniaturized package.
ISSN:0003-2700
1520-6882
DOI:10.1021/ac0513459